Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.093
Filtrar
1.
Hum Cell ; 37(3): 689-703, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551774

RESUMO

Polycystic ovary syndrome (PCOS) is a complex gynaecological endocrine disease that occurs in women of childbearing age. The pathogenesis of PCOS is still unclear and further exploration is needed. Here, proteomic analysis indicated that the expression of farnesyl diphosphate synthase (FDPS) protein in ovarian tissue of PCOS mice was significantly decreased. The purpose of this study is to investigate the relationship between potential biomarkers of PCOS and granulosa cells (GCs) function. The mechanisms by which FDPS affected the proliferation of granulosa cells were also explored both in vitro and in vivo. We found that knockdown of FDPS inhibited the proliferation of KGN (human ovarian granulosa cell line), while overexpression of FDPS had the opposite effect. FDPS activated Rac1 (Rac Family Small GTPase 1) activity and regulated MAPK/ERK signalling pathway, which affecting the proliferation of KGN cells significantly. In addition, treatment with the adeno-associated virus (AAV)-FDPS reverses the dehydroepiandrosterone (DHEA)-induced PCOS-phenotype in mice. Our data indicated that FDPS could regulate the proliferation of ovarian GCs by modulating MAPK/ERK (mitogen-activated protein kinase/extracellular regulated protein kinases) pathway via activating Rac1 activity. These findings suggest that FDPS could be of great value for the regulation of ovarian granulosa cell function and the treatment of PCOS.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/genética , Geraniltranstransferase/metabolismo , Proteômica , Células da Granulosa/metabolismo , Proliferação de Células , MicroRNAs/metabolismo , Apoptose , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
J Cell Biol ; 223(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38551497

RESUMO

Phenotypic heterogeneity poses a significant hurdle for cancer treatment but is under-characterized in the context of tumor invasion. Amidst the range of phenotypic heterogeneity across solid tumor types, collectively invading cells and single cells have been extensively characterized as independent modes of invasion, but their intercellular interactions have rarely been explored. Here, we isolated collectively invading cells and single cells from the heterogeneous 4T1 cell line and observed extensive transcriptional and epigenetic diversity across these subpopulations. By integrating these datasets, we identified laminin-332 as a protein complex exclusively secreted by collectively invading cells. Live-cell imaging revealed that laminin-332 derived from collectively invading cells increased the velocity and directionality of single cells. Despite collectively invading and single cells having similar expression of the integrin α6ß4 dimer, single cells demonstrated higher Rac1 activation upon laminin-332 binding to integrin α6ß4. This mechanism suggests a novel commensal relationship between collectively invading and single cells, wherein collectively invading cells promote the invasive potential of single cells through a laminin-332/Rac1 axis.


Assuntos
Laminina , Proteínas rac1 de Ligação ao GTP , Humanos , Movimento Celular , Integrina alfa6beta4/genética , 60655 , Laminina/genética , Laminina/metabolismo , Neoplasias/genética , Simbiose , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391912

RESUMO

Platelet function at vascular injury sites is tightly regulated through the actin cytoskeleton. The Wiskott-Aldrich syndrome protein-family verprolin-homologous protein (WAVE)-regulatory complex (WRC) activates lamellipodia formation via ARP2/3, initiated by GTP-bound RAC1 interacting with the WRC subunit CYFIP1. The protein FAM49b (Family of Unknown Function 49b), also known as CYRI-B (CYFIP-Related RAC Interactor B), has been found to interact with activated RAC1, leading to the negative regulation of the WRC in mammalian cells. To investigate the role of FAM49b in platelet function, we studied platelet-specific Fam49b-/--, Cyfip1-/--, and Cyfip1/Fam49b-/--mice. Platelet counts and activation of Fam49b-/- mice were comparable to those of control mice. On fully fibrinogen-coated surfaces, Fam49b-/--platelets spread faster with an increased mean projected cell area than control platelets, whereas Cyfip1/Fam49b-/--platelets did not form lamellipodia, phenocopying the Cyfip1-/--platelets. However, Fam49b-/--platelets often assumed a polarized shape and were more prone to migrate on fibrinogen-coated surfaces. On 2D structured micropatterns, however, Fam49b-/--platelets displayed reduced spreading, whereas spreading of Cyfip1-/-- and Cyfip1/Fam49b-/--platelets was enhanced. In summary, FAM49b contributes to the regulation of morphology and migration of spread platelets, but to exert its inhibitory effect on actin polymerization, the functional WAVE complex must be present.


Assuntos
Proteínas de Transporte , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Plaquetas/metabolismo , Proteínas de Transporte/metabolismo , Fibrinogênio/metabolismo , Mamíferos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
J Exp Clin Cancer Res ; 43(1): 65, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424547

RESUMO

BACKGROUND: Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS: In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS: In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS: CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.


Assuntos
Neoplasias , Proteínas de Junções Íntimas , Animais , Humanos , Camundongos , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Proteômica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas de Junções Íntimas/metabolismo
5.
Cell Death Dis ; 15(2): 155, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378644

RESUMO

Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.


Assuntos
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipóxia/genética , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
6.
Sci Adv ; 10(6): eadi7840, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324689

RESUMO

Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.


Assuntos
Túbulos Renais Coletores , Túbulos Renais Coletores/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
7.
Nat Struct Mol Biol ; 31(2): 364-377, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332367

RESUMO

Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Humanos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Life Sci ; 342: 122510, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387701

RESUMO

Rac1 is a member of the Rho GTPase family which plays major roles in cell mobility, polarity and migration, as a fundamental regulator of actin cytoskeleton. Signal transduction by Rac1 occurs through interaction with multiple effector proteins, and its activity is regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). The small protein is mainly anchored to the inner side of the plasma membrane but it can be found in endocellular compartments, notably endosomes and cell nuclei. The protein localizes also into mitochondria where it contributes to the regulation of mitochondrial dynamics, including both mitobiogenesis and mitophagy, in addition to signaling processes via different protein partners, such as the proapoptotic protein Bcl-2 and chaperone sigma-1 receptor (σ-1R). The mitochondrial form of Rac1 (mtRac1) has been understudied thus far, but it is as essential as the nuclear or plasma membrane forms, via its implication in regulation of oxidative stress and DNA damages. Rac1 is subject to diverse post-translational modifications, notably to a geranylgeranylation which contributes importantly to its mitochondrial import and its anchorage to mitochondrial membranes. In addition, Rac1 contributes to the mitochondrial translocation of other proteins, such as p53. The mitochondrial localization and functions of Rac1 are discussed here, notably in the context of human diseases such as cancers. Inhibitors of Rac1 have been identified (NSC-23766, EHT-1864) and some are being developed for the treatment of cancer (MBQ-167) or central nervous system diseases (JK-50561). Their effects on mtRac1 warrant further investigations. An overview of mtRac1 is provided here.


Assuntos
Transdução de Sinais , Proteínas rac1 de Ligação ao GTP , Humanos , Proteínas rac1 de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mitocôndrias/metabolismo
9.
Nat Rev Mol Cell Biol ; 25(4): 290-308, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172611

RESUMO

The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.


Assuntos
Citoesqueleto , Proteínas rho de Ligação ao GTP , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Transdução de Sinais , Movimento Celular , Proteínas rac1 de Ligação ao GTP/metabolismo
10.
Adv Sci (Weinh) ; 11(11): e2307549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225743

RESUMO

The precise spatiotemporal dynamics of protein activities play a crucial role in cell signaling pathways. To control cellular functions in a spatiotemporal manner, a powerful method called photoactivatable chemically induced dimerization (pCID) is used. In this study, photoactivatable nanobody conjugate inducers of dimerization (PANCIDs) is introduced, which combine pCID with nanobody technology. A PANCID consists of a nanobody module that directly binds to an antigenic target, a photocaged small molecule ligand, and a cyclic decaarginine (cR10 *) cell-penetrating peptide (CPP) for efficient nonendocytic intracellular delivery. Therefore, PANCID photodimerizers also benefit from nanobodies, such as their high affinities (in the nm or pm range), specificities, and ability to modulate endogenous proteins. Additionally it is demonstrated that the nanobody moiety can be easily replaced with alternative ones, expanding the potential applications. By using PANCIDs, the dynamics of the Tiam1-Rac1 signaling cascade is investigated and made an interesting finding. It is found that Rac1 and Tiam1 exhibit distinct behaviors in this axis, acting as time-resolved "molecular oscillators" that transit between different functions in the signaling cascade when activated either slowly or rapidly.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Proteínas rac1 de Ligação ao GTP , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Transdução de Sinais
11.
Prog Neurobiol ; 234: 102572, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253120

RESUMO

Patients with Parkinson's disease (PD) display non-motor symptoms arising prior to the appearance of motor signs and before a clear diagnosis. Motor and non-motor symptoms correlate with progressive deposition of the protein alpha-synuclein (Asyn) both within and outside of the central nervous system, and its accumulation parallels neurodegeneration. The genome of Caenorhabditis elegans does not encode a homolog of Asyn, thus rendering this nematode an invaluable system with which to investigate PD-related mechanisms in the absence of interference from endogenous Asyn aggregation. CED-10 is the nematode homolog of human RAC1, a small GTPase needed to maintain the function and survival of dopaminergic neurons against human Asyn-induced toxicity in C. elegans. Here, we introduce C. elegans RAC1/ced-10 mutants as a predictive tool to investigate early PD symptoms before neurodegeneration occurs. Deep phenotyping of these animals reveals that, early in development, they displayed altered defecation cycles, GABAergic abnormalities and an increased oxidation index. Moreover, they exhibited altered lipid metabolism evidenced by the accumulation of lipid droplets. Lipidomic fingerprinting indicates that phosphatidylcholine and sphingomyelin, but not phosphatidylethanolamine or phosphatidylserine, were elevated in RAC1/ced-10 mutant nematodes. These collective characteristics reflect the non-motor dysfunction, GABAergic neurotransmission defects, upregulation of stress response mechanisms, and metabolic changes associated with early-onset PD. Thus, we put forward an easy-to-manipulate preclinical animal model to deepen our understanding of early-stage PD and accelerate the translational path for therapeutic target discovery.


Assuntos
Doença de Parkinson , Animais , Humanos , Doença de Parkinson/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
12.
Blood ; 143(15): 1476-1487, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38194689

RESUMO

ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.


Assuntos
Síndromes de Imunodeficiência , Síndrome da Aderência Leucocítica Deficitária , Doenças da Imunodeficiência Primária , Imunodeficiência Combinada Severa , Humanos , Recém-Nascido , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Neutrófilos/metabolismo , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , 60639 , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Superóxidos/metabolismo
13.
Sci Rep ; 14(1): 1218, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216638

RESUMO

Vascular permeability is mediated by Cortactin (Cttn) and regulated by several molecules including cyclic-adenosine-monophosphate, small Rho family GTPases and the actin cytoskeleton. However, it is unclear whether Cttn directly interacts with any of the junctional components or if Cttn intervenes with signaling pathways affecting the intercellular contacts and the cytoskeleton. To address these questions, we employed immortalized microvascular myocardial endothelial cells derived from wild-type and Cttn-knock-out mice. We found that lack of Cttn compromised barrier integrity due to fragmented membrane distribution of different junctional proteins. Moreover, immunoprecipitations revealed that Cttn is within the VE-cadherin-based adherens junction complex. In addition, lack of Cttn slowed-down barrier recovery after Ca2+ repletion. The role of Cttn for cAMP-mediated endothelial barrier regulation was analyzed using Forskolin/Rolipram. In contrast to Cttn-KO, WT cells reacted with increased transendothelial electrical resistance. Absence of Cttn disturbed Rap1 and Rac1 activation in Cttn-depleted cells. Surprisingly, despite the absence of Cttn, direct activation of Rac1/Cdc42/RhoA by CN04 increased barrier resistance and induced well-defined cortical actin and intracellular actin bundles. In summary, our data show that Cttn is required for basal barrier integrity by allowing proper membrane distribution of junctional proteins and for cAMP-mediated activation of the Rap1/Rac1 signaling pathway.


Assuntos
Junções Aderentes , Antígenos CD , Células Endoteliais , Camundongos , Animais , Junções Aderentes/metabolismo , Células Endoteliais/metabolismo , Actinas/metabolismo , Cortactina/genética , Cortactina/metabolismo , Caderinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
14.
Am J Physiol Renal Physiol ; 326(2): F202-F218, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059296

RESUMO

Angiotensin II increases apical plasma membrane pendrin abundance and function. This study explored the role of the small GTPase Rac1 in the regulation of pendrin by angiotensin II. To do this, we generated intercalated cell (IC) Rac1 knockout mice and observed that IC Rac1 gene ablation reduced the relative abundance of pendrin in the apical region of intercalated cells in angiotensin II-treated mice but not vehicle-treated mice. Similarly, the Rac1 inhibitor EHT 1864 reduced apical pendrin abundance in angiotensin II-treated mice, through a mechanism that does not require aldosterone. This IC angiotensin II-Rac1 signaling cascade modulates pendrin subcellular distribution without significantly changing actin organization. However, NADPH oxidase inhibition with APX 115 reduced apical pendrin abundance in vivo in angiotensin II-treated mice. Moreover, superoxide dismutase mimetics reduced Cl- absorption in angiotensin II-treated cortical collecting ducts perfused in vitro. Since Rac1 is an NADPH subunit, Rac1 may modulate pendrin through NADPH oxidase-mediated reactive oxygen species production. Because pendrin gene ablation blunts the pressor response to angiotensin II, we asked if pendrin blunts the angiotensin II-induced increase in kidney superoxide. Although kidney superoxide was similar in vehicle-treated wild-type and pendrin knockout mice, it was lower in angiotensin II-treated pendrin-null kidneys than in wild-type kidneys. We conclude that angiotensin II acts through Rac1, independently of aldosterone, to increase apical pendrin abundance. Rac1 may stimulate pendrin, at least partly, through NADPH oxidase. This increase in pendrin abundance contributes to the increment in blood pressure and kidney superoxide content seen in angiotensin II-treated mice.NEW & NOTEWORTHY This study defines a new signaling mechanism by which angiotensin II modulates oxidative stress and blood pressure.


Assuntos
Angiotensina II , Transportadores de Sulfato , Proteínas rac1 de Ligação ao GTP , Animais , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Camundongos Knockout , NADPH Oxidases/metabolismo , Transportadores de Sulfato/genética , Superóxidos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
15.
Cell Signal ; 114: 110972, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984604

RESUMO

BACKGROUND: Spinal astrocyte-mediated neuroinflammation is an important mechanism for the maintenance of chronic inflammatory pain. Previous studies have investigated that Ras-related C3 botulinum toxin substrate 1 (Rac1) is closely related to astrocyte activation after central nervous system injury. However, the role of Rac1 in astrocyte activation in chronic inflammatory pain has not been reported. METHODS: Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model and LPS-stimulated astrocytes were used to investigate the role of Rac1 in astrocyte activation and the underlying mechanism. Rac1-interfering adeno-associated virus (AAV) targeting astrocytes was delivered to spinal astrocytes by intrathecal administration and a Rac1 specific inhibitor, NSC23766, was used to block cultured astrocytes. The glial fibrillary acidic protein (GFAP), proinflammatory cytokines, p-NF-κB, and nod-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome were detected by RT-qPCR, Western blotting, and immunofluorescence to investigate the activation of astrocytes. RESULTS: CFA induced spinal astrocyte activation and increased the expression of active Rac1 in spinal astrocytes. Knockdown of astrocyte Rac1 alleviated chronic inflammatory pain and inhibited astrocyte activation. Inhibition of Rac1 activation in cultured astrocytes decreased the expression of GFAP and proinflammatory cytokines. Knockdown of Rac1 inhibited the increase of expression of NLRP3 inflammasome and phosphorylation of NF-κB in the spinal lumbar enlargement after CFA injection. Similarly, the inhibition of Rac1 suppressed the increase of NLRP3 inflammasome and p-NF-κB protein level after LPS stimulation. CONCLUSION: Knockdown of astrocyte Rac1 attenuated CFA-induced hyperalgesia and astrocyte activation possibly by blocking the expression of NLRP3 inflammasome and phosphorylation of NF-κB.


Assuntos
Dor Crônica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas rac1 de Ligação ao GTP , Astrócitos/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Citocinas/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910204

RESUMO

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Assuntos
Movimento Celular , Queratinócitos , Proteína cdc42 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Miosinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos
17.
Mol Oncol ; 18(3): 620-640, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098337

RESUMO

The small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) has been implicated in cancer progression and in the poor prognosis of various types of tumors. Rac1 SUMOylation occurs during epithelial-mesenchymal transition (EMT), and it is required for tumor cell migration and invasion. Here we identify POTEE (POTE Ankyrin domain family member E) as a novel Rac1-SUMO1 effector involved in breast cancer malignancy that controls invadopodium formation through the activation of Rac1-SUMO1. POTEE activates Rac1 in the invadopodium by recruiting TRIO-GEF (triple functional domain protein), and it induces tumor cell proliferation and metastasis in vitro and in vivo. We found that the co-localization of POTEE with Rac1 is correlated with more aggressive breast cancer subtypes. Given its role in tumor dissemination, the leading cause of cancer-related deaths, POTEE could represent a potential therapeutic target for these types of cancer.


Assuntos
Neoplasias da Mama , Podossomos , Humanos , Feminino , Transdução de Sinais , Podossomos/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Movimento Celular , Linhagem Celular Tumoral
18.
J Transl Med ; 21(1): 876, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041179

RESUMO

BACKGROUND: Despite recent advances in locoregional, systemic, and novel checkpoint inhibitor treatment, hepatocellular carcinoma (HCC) is still associated with poor prognosis. The feasibility of potentially curative liver resection (LR) and transplantation (LT) is limited by the underlying liver disease and a shortage of organ donors. Especially after LR, high recurrence rates present a problem and circulating tumor cells are a major cause of extrahepatic recurrence. Tigecycline, a commonly used glycylcycline antibiotic, has been shown to have antitumorigenic effects and could be used as a perioperative and adjuvant therapeutic strategy to target circulating tumor cells. We aimed to investigate the effect of tigecycline on HCC cell lines and its mechanisms of action. METHODS: Huh7, HepG2, Hep3B, and immortalized hepatocytes underwent incubation with clinically relevant tigecycline concentrations, and the influence on proliferation, migration, and invasion was assessed in two- and three-dimensional in vitro assays, respectively. Bioinformatic analysis was used to identify specific targets of tigecycline. The expression of RAC1 was detected using western blot, RT-PCR and RNA sequencing. ELISA and flow cytometry were utilized to measure reactive oxygen species (ROS) generation upon tigecycline treatment and flow cytometry to detect alterations in cell cycle. Changes in mitochondrial function were detected via seahorse analysis. RNA sequencing was performed to examine involved pathways. RESULTS: Tigecycline treatment resulted in a significant reduction of mitochondrial function with concomitantly preserved mitochondrial size, which preceded the observed decrease in HCC cell viability. The sensitivity of HCC cells to tigecycline treatment was higher than that of immortalized non-cancerous THLE-2 hepatocytes. Tigecycline inhibited both migratory and invasive properties. Tigecycline application led to an increase of detected ROS and an S-phase cell cycle arrest. Bioinformatic analysis identified RAC1 as a likely target for tigecycline and the expression of this molecule was increased in HCC cells as a result of tigecycline treatment. CONCLUSION: Our study provides evidence for the antiproliferative effect of tigecycline in HCC. We show for the first time that this effect, likely to be mediated by reduced mitochondrial function, is associated with increased expression of RAC1. The reported effects of tigecycline with clinically relevant and achievable doses on HCC cells lay the groundwork for a conceivable use of this agent in cancer treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Tigeciclina/farmacologia , Tigeciclina/metabolismo , Tigeciclina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Células Neoplásicas Circulantes/metabolismo , Proliferação de Células/genética , Células Hep G2 , Mitocôndrias/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Apoptose , Regulação Neoplásica da Expressão Gênica , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/farmacologia
19.
Proc Natl Acad Sci U S A ; 120(52): e2305684120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113258

RESUMO

Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.


Assuntos
Neoplasias do Colo , Fatores de Troca do Nucleotídeo Guanina , Humanos , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais/fisiologia , Invasividade Neoplásica/patologia , Metilação , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(52): e2310221120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109551

RESUMO

The 21kD GTPase Rac is an evolutionarily ancient regulator of cell shape and behavior. Rac2 is predominantly expressed in hematopoietic cells where it is essential for survival and motility. The hyperactivating mutation Rac2E62K also causes human immunodeficiency, although the mechanism remains unexplained. Here, we report that in Drosophila, hyperactivating Rac stimulates ovarian cells to cannibalize neighboring cells, destroying the tissue. We then show that hyperactive Rac2E62K stimulates human HL60-derived macrophage-like cells to engulf and kill living T cell leukemia cells. Primary mouse Rac2+/E62K bone-marrow-derived macrophages also cannibalize primary Rac2+/E62K T cells due to a combination of macrophage hyperactivity and T cell hypersensitivity to engulfment. Additionally, Rac2+/E62K macrophages non-autonomously stimulate wild-type macrophages to engulf T cells. Rac2E62K also enhances engulfment of target cancer cells by chimeric antigen receptor-expressing macrophages (CAR-M) in a CAR-dependent manner. We propose that Rac-mediated cell cannibalism may contribute to Rac2+/E62K human immunodeficiency and enhance CAR-M cancer immunotherapy.


Assuntos
Síndromes de Imunodeficiência , Neoplasias , Receptores de Antígenos Quiméricos , Animais , Camundongos , Humanos , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Canibalismo , Macrófagos/metabolismo , Síndromes de Imunodeficiência/genética , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...